# CHEMICAL AND ELECTROCHEMICAL SYNTHESIS OF QUINONEIMINE N-OXIDES FROM INDOLINONE-3-ARYLIMINO NITROXIDE RADICALS

#### Angelo ALBERTI

I.Co.C.E.A. - C.N.R., 8 Via della Chimica, I-40064 OZZANO EMILIA, Italy

#### Romano ANDRUZZI

Dipartimento di Ingegneria Chimica e dei Materiali, Università, 4 Via Assergi, I-67100 L'AQUILA, Italy

# Lucedio GRECI\* and Pierluigi STIPA

Dipartimento di Scienze dei Materiali e della Terra, Facoltà di Ingegneria, Via Brecce Bianche, I-60131 ANCONA, Italy

# Giancarlo MARROSU and Antonio TRAZZA

Dipartimento di Ingegneria Chimica, Università "La Sapienza", 7 Via del Castro Lamenziano, 00161 ROMA, Italy

# Marino POLONI

Dipartimento di Chimica Applicata e Scienze dei Materiali, Facoltà di Ingegneria, 2 Viale Risorgimento, I-40136 BOLOGNA, Italy

# (Received in UK 18 December 1987)

Abstract: 2,2-Diphenyl-3-arylimino-indoline-1-oxyls are efficiently converted to the corresponding isomeric 5- and 7-quinoneimine N-oxides either by chemical (cerium ammonium nitrate) or electrochemical oxidation in aqueous acetonitrile. The electrochemical studies indicate that mono-electronic oxidation of the starting compounds leads to the corresponding oxoammonium ions. These are stable in anhydrous aceto-nitrile, as indicated by cyclic voltammetry, but in non-anhydrous conditions undergo rapid nucleophilic attack by water molecule followed by further oxidation to the final products. The relative economic and practical advantages of the electrochemical vs the chemical process are discussed. The ESR parameters for the new nitroxide radicals involved in the present investigation are also reported.

2,2-Disubstituted-3-oxo-indoline-1-oxyls 1 (indolinone nitroxides) have been extensively studied in different contexts. They undergo homolytic substitution in the indolic ring with electrophilic paramagnetic species such as aroyloxyl,<sup>1</sup> tert-butoxyl,<sup>2a</sup> and aminyl radicals,<sup>3</sup> or coupling to the nitroxide free valence with nucleophilic methyl<sup>2a</sup> and benzyl<sup>2b</sup> radicals. Nitroxides 1 also undergo nucleophilic substitution when oxidized in the presence of halogen and carboxy anions,<sup>4</sup> water<sup>5</sup> and methanol.<sup>6</sup>



Scheme 1

Nitroxides in general undergo a mono-electronic oxidation<sup>7,8</sup> leading to the formation of oxoammonium ions. These species behave as oxidants in the mediated chemical<sup>9</sup> and electrochemical<sup>10</sup> oxidation when formed from <u>tetra</u>-methylpiperidino- and pyrrolidino-1-oxyls, but as strong electrophiles when the oxoammonium function is in a conjugated position with a benzene ring. This is actually the case of nitroxides 1 and 2 where the N-O function, and consequently the oxoammonium function originated by mono-electronic oxidation, is conjugated to the benzene ring of the indole nucleus. The present paper deals with chemical and electrochemical oxidation of nitroxides 2a-e in the presence of water. The study has been carried out in order to verify whether substitution of an arylimino group for the carbonyl oxygen at C-3 induces any significant variation in the behaviour of the nitroxides and in the reactivity of the involved oxoammonium ions 4a-e, which were detected and investigated by voltammetric techniques. The controlled-potential macroscale electrolysis of nitroxides 2a-e represents a new convenient synthetic route to quinoneimine N-oxides 7a-e and 8a-e, particularly if compared to the chemical method, which requires a substantial amount of oxidizing agent.

## RESULTS AND DISCUSSION

2e

Chemical or electrochemical oxidation of nitroxides 2a-e in MeCN in the presence of water affords quinoneimine N-oxides 7a-e and 8a-e. The higher yields of the former compounds can be reasonably imputed to the lower steric hindrance which characterizes position 5 with respect to position 7 in the intermediate oxoammonium ion. The finding that overall yields of the chemical and anodic oxidations are practically the same, provides indication that both processes involve the same intermediate species, <u>i.e</u>. the oxoammonium ions. We therefore propose the reaction sequence shown in Scheme 2 to explain the formation of quinoneimine N-oxides, irrespective of the nature of the oxidizing process.

Compounds 7a-e and 8a-e were identified by using a variety of spectroscopic techniques, including IR, UV, NMR and mass spectrometry; in the case of the 5-substituted derivatives 7a-e, identification was further supported by correct elemental analysis. The distinction between compounds 7a-e and the corresponding 7-substituted compounds 8a-e was mainly based on their <sup>1</sup>H NMR and UV spectra. Indeed the proton NMR spectra of 7 and 8 (independent of the nature of the arylimino group) have very characteristic features that provide a useful means of identification.

|          |      | 2                               |  |  |
|----------|------|---------------------------------|--|--|
| Compound | Ar   | Product (% yields)              |  |  |
| 2a       | С_Н_ | <b>7a</b> (86%) <b>8a</b> (11%) |  |  |

86 (15%)

8c (13%)

8d (7%)

8e (15%)

7e (82%)

Table 1 - Percent yields of 5- (7a-e) and 7- (8a-e) quinoneimine N-oxides isolated in the electrochemical oxidation (at 0.90 V) of 2a-e in MeCN-H\_0.

2a $C_{6}H_{5}$ 7a (86%)2b $C_{6}H_{4}$ -OMe(p)7b (78%)2c $C_{6}H_{4}$ -Me(p)7c (85%)2d $C_{6}H_{4}$ -Cl(p)7d (90%)

 $C_{H_{A}}$ -Br(p)

| Compound       | M.p.<br>∘C                  | Formula                                                                      | ару <u>аларда (</u> , <u>988.00 стала</u> , 200 | Found (%<br>Calc. % | )                | IR ≇max<br>1<br>cm | UV λmax<br>nm (ε) <sup>d</sup>             |  |
|----------------|-----------------------------|------------------------------------------------------------------------------|-------------------------------------------------|---------------------|------------------|--------------------|--------------------------------------------|--|
| 7a             | 173-4 <sup>b</sup>          | C26 <sup>H</sup> 18 <sup>N</sup> 2 <sup>O</sup> 2                            | C 80.05<br>(79.98)                              | H 4.55<br>(4.64)    | N 7.08<br>(7.19) | 1670–1610<br>1548  | 216 (29,560)<br>379 (22,059)               |  |
| 7b             | 81-2 <sup>b</sup>           | <sup>C</sup> 27 <sup>H</sup> 20 <sup>N</sup> 2 <sup>O</sup> 3                | C 77.23<br>(77.12)                              | H 4.83<br>(4.79)    | N 6.46<br>(6.66) | 1665-1610<br>1550  |                                            |  |
| 7c             | 105-6 <sup>b</sup>          | C27 <sup>H</sup> 20 <sup>N</sup> 2 <sup>0</sup> 2                            | C 79.95<br>(80.18)                              | H 4.87<br>(4.98)    | N 6.95<br>(6.92) | 1660-1610<br>1550  |                                            |  |
| 7d             | 81 <sup>b</sup>             | C_H_N_0_C1<br>26 <sup>H</sup> 17 <sup>N</sup> 2 <sup>O</sup> 2 <sup>C1</sup> | C 73.54<br>(73.49)                              | H 4.15<br>(4.03)    | N 6.52<br>(6.59) | 1670–1610<br>1547  |                                            |  |
| 7e             | 167 <sup>b</sup>            | C26 <sup>H</sup> 17 <sup>N</sup> 2 <sup>O</sup> 2 <sup>Br</sup>              | C 66.62<br>(66.53)                              | H 3.71<br>(3.65)    | N 5.93<br>(5.97) | 1673-1610<br>1548  |                                            |  |
| 8a             | 192 <b>-</b> 4 <sup>C</sup> | <sup>C</sup> 26 <sup>H</sup> 18 <sup>N</sup> 2 <sup>O</sup> 2                |                                                 |                     |                  | 1655-1628<br>1600  | 214 (36,579)<br>334 (9,186)<br>468 (3,652) |  |
| 8b             | 180–2 <sup>°</sup>          | <sup>C</sup> 27 <sup>H</sup> 20 <sup>N</sup> 2 <sup>O</sup> 3                |                                                 |                     |                  | 1650-1630<br>1598  |                                            |  |
| 8c             | 200-2 <sup>c</sup>          | <sup>C</sup> 27 <sup>H</sup> 20 <sup>N</sup> 2 <sup>O</sup> 2                |                                                 |                     |                  | 1660-1630<br>1600  |                                            |  |
| 8d             | 204–6 <sup>C</sup>          | <sup>C</sup> 26 <sup>H</sup> 17 <sup>N</sup> 2 <sup>O</sup> 2 <sup>C1</sup>  |                                                 |                     |                  | 1672–1630<br>1602  |                                            |  |
| 8 <del>c</del> | 214-6 <sup>°</sup>          | C26 <sup>H</sup> 17 <sup>N</sup> 2 <sup>O</sup> 2 <sup>Br</sup>              |                                                 |                     |                  | 1675-1632<br>1604  |                                            |  |

Table 2 - Analytical and spectroscopic data of compounds 7a-e and 8a-e.

a, all compounds gave the expected molecular ion peak in their mass spectra; b, yellow crystals from EtOH; c, red crystals from ethylacetate solution by spontaneous evaporation to dryness; d, from MeOH solutions.

Table 3 - Voltammetric data for the oxidation at a pulsed platinum electrode of nitroxide radicals 2a-e in dried acetonitrile.

| Conc.<br>(mM) | E <sub>1/2</sub><br>(V)                               | іе<br>(µА)                                                                                 | slope<br>(mV)                                                                                       |
|---------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| 1.29          | 0.68                                                  | 6.64                                                                                       | 60                                                                                                  |
| 1.08          | 0.66                                                  | 5.60                                                                                       | <b>6</b> 5                                                                                          |
| 0.96          | 0.62                                                  | 4.88                                                                                       | 65                                                                                                  |
| 1.12          | 0.69                                                  | 5.76                                                                                       | 60                                                                                                  |
| 1.03          | 0.69                                                  | 5.40                                                                                       | 60                                                                                                  |
|               | Conc.<br>(mM)<br>1.29<br>1.08<br>0.96<br>1.12<br>1.03 | Conc.  E    1/2  (W)    1.29  0.68    1.08  0.66    0.96  0.62    1.12  0.69    1.03  0.69 | Lonc. $E_{1/2}$ $1_e$ (mM)(V)( $\mu$ A)1.290.686.641.080.665.600.960.624.881.120.695.761.030.695.40 |

(a) Solutions containing 0.1M Et NClO<sub>4</sub>; electrode pulsing time, t<sub>p</sub> = 2s; T = 22°C; the voltammograms were recorded by dc-sampled technique; the potentials are referred to Ag/AgClO<sub>4</sub> 0.1M in MeCN solution; the slope was calculated using  $E_{3/4} - E_{1/4}$ .



## Scheme 2

Thus, the spectra of 5-substituted derivatives show signals attributable to  $H_4$  (doublet,  $\delta = 5.74$ ,  $J_{4,6}$  1.75Hz),  $H_6$  (pseudo-quartet,  $\delta = 6.66$ ,  $J_{4,6}$  1.75Hz,  $J_{6,7}$  10Hz) and  $H_7$  (doublet,  $\delta = 7.74$ ,  $J_{6,7}$  10Hz), while those of the 7-substituted analogues exhibit splittings due to  $H_4$  (doublet,  $\delta = 5.86$ ,  $J_{4,5}$  6.25Hz),  $H_5$  (pseudo-quartet,  $\delta = 7.01$ ,  $J_{4,5}$  6.25 Hz,  $J_{5,6}$  10Hz), and  $H_6$  (doublet,  $\delta = 6.67$ ,  $J_{6,7}$  10Hz). On the other hand the UV spectra of compounds 7 and 8 differ in that those of the latter show absorption at 468 nm along with others at shorter wavelength (334, 214 nm), while those of the former do not have any absorption maximum in the visible region (379 and 216 nm). This is consistent with the greater extension of the  $\pi$ -system in derivatives **Ba-e** (and with their red colour) if compared to that of **7a-e**, which are yellow.

Quinoneimine N-oxides 7a-e and 8a-e were generally contaminated by small amounts of the corresponding nitroxides, 6a-e and 9a-e, respectively. This was evident from the abnormally large linewidth characterizing their NMR spectra; this inconvenience was eliminated by addition of PbO<sub>2</sub> to the solution.

1506



Conversely, addition of some phenylhydrazine to solutions of the quinoneimine N-oxides lead to the detection of strong ESR signals due to nitroxides 6 and 9. As it is the case for the unsubstituted nitroxides 2a-e, the spectral parameters of 6a-e and 9a-e proved to be independent on the nature of the arylimino group. We therefore report the data of the two monosubstituted members, <u>i.e.</u> of radical 6a: a  $(H_{4,6}) = 0.94$  G, a (N-exocyclic) = 0.94 G, a  $(H_7) = 3.07$  G, a (N-endocyclic) = 10.17 G, <u>g</u> 2.0052<sub>6</sub>, and 9a: a  $(H_{4,6}) = 0.82$  G, a (N-exocyclic) = 0.82 G, a  $(H_5) = 3.44$  G, a (N-endocyclic) = 10.76 G, <u>g</u> 2.0054<sub>2</sub>.



Figure 1 - Dc (curves A-C) and cyclic (curves A'-C') voltammograms of indolinone 3-p-bromophenylimino nitroxide radical **2e** at a platinum electrode. (A)  $1.0 \times 10^{-3}$  M 2e in MeCN-0.1 M Et NClO<sub>4</sub>; T = 22.0°C; electrode pulse time = 2.0 s; (A') as (A) and with the stationary platinum electrode polarized at 0.1 V s<sup>-1</sup>; (B,C) or (B',C') as (A) or (A') plus H<sub>2</sub>O: % v/v H<sub>2</sub>O/MeCN 1.6% (B) or (B'), and 4.8% (C) or (C').

CHEMICAL OXIDATION -When oxidizing nitroxides 2a-e by chemical methods in order to obtain the quinoneimine N-oxides 7 and 8, care must be exerted in the choice of the oxidizing agent. In the first place this must be soluble in aqueous acetonitrile, which is the reaction medium, and secondly, as the reaction proceeds via the oxoammonium ion (strong electrophile). it must not give rise to nucleophilic species able to overcome or tocompete with water in giving nucleophilic attack of the indolinic ring. Actually, it has been previously shown that indeed the reaction of nitroxide 1 with either lead tetracetate<sup>6</sup> bromine or leads to 5-and 7-acetoxy or



Figure 2 - Experimental and simulated ESR spectrum of radical **2a**.

bromo-substituted nitroxides.

Because of its relatively good solubility and of the low nucleophilicity of the  $NO_3^$ anion, we have chosen cerium ammonium nitrate to carry out the chemical oxidation, although a minor drawback is given by the non insignificant cost of this chemical which must be used in substantial amount (three equivalents per equivalent of nitroxide).

**ELECTROCHEMICAL OXIDATION** - Because of the difficulty of finding a low cost oxidizing agent characterized by a high solubility, and able to give clean reactions, we tried the electrochemical oxidation of nitroxides **2a-e** as an alternative route to quinone-imine N-oxides.

In the range of concentration used  $(1.10^{-4} - 5.10^{-3})$  mitroxide radicals **2a-e** in dried MeCN (with Et\_NClO<sub>4</sub> as supporting electrolyte) exhibited at a pulsed platinum electrode (ppe) one oxidation step at potentials between 0.62 and 0.69 V. As example

the voltammogram of **2e** is shown in Fig. 1, (curve A), whereas voltammetric data for the nitroxide radicals studied are reported in Table 3.

The oxidation process of **2a-e** turned out to be mono-electronic, reversible and diffusion-controlled as proved by the following experimental observations: i) the plot of E vs. log  $|(i_1-i)/i|$  is a straight line, with a slope of 55-60 mV; ii) the slope of the log  $i_1$  vs. log t plot is about 0.18 and iii) the function  $i_1/C$  values are comparable with the corresponding values determined in the same experimental conditions for the reversible one-electron oxidation process of 2,2-disubstituted 3-oxoindoline-1-oxyls.<sup>5</sup>

At a stationary platinum electrode (spe) and in the sweep-rate range examined (v = 0.05 - 10.0 Vs<sup>-1</sup>) the oxidation process of **2a-e** exhibits the following features: i) a voltage sweep from zero towards positive potentials (up to 1.0 - 1.2 V) shows an anodic peak, which corresponds to the oxidation step observed at the ppe; ii) reversal of the scan reveals the complementary cathodic peak due to the reduction of the primary oxidation product (see Fig. 1, curve A'). The parameters of this anodic-cathodic system meet the diagnostic criteria expected for a reversible one-electron process producing a species (oxammonium cations **4a-e**) which is stable during the time of the measurements, <u>i.e.</u>, i) the ratio of the anodic to the cathodic peak current ( $i_{p_a}/i_{p_c}$ ) is unity; ii) the difference between anodic and cathodic peak potentials is 60-70 mV and iii) the current function  $i_{p_a}^{-}/v^{\frac{1}{2}}$  value is constant.

On adding increasing amounts of a nucleophilic agent such as water  $(0 - 10\% \text{ v/v}, \text{H}_2^0/\text{MeCN})$  to the solutions of 2a-e in MeCN-Et\_NClO<sub>4</sub>, the original oxidation step increases until its height becomes

2.2 - 2.7 times higher i.e. the electrode process tends to become three-electronic, (see Fig. 1, curves B and C). The corresponding cyclic voltammetric experiments show that in MeCN-H O the anodic peak of 2a-e becomes completely irreversible, kinetic in character and involves more than two electrons. In fact: i) the original anodic peak increases its height; ii) the corresponding complementary cathodic peak disappears and iii) the current function  $i_{p_a}/v^{\chi}$  value decreases (Fig. 1, curves B' and C').

During controlled-potential electrolysis (at 0.90V) of nitroxide radicals 2a-e in dried MeCN-Et\_NCIO, the current decays slowly to the background values in accordance with 2< n <3. The electrolysis followed by tlc on SiO, showed the increasing formation of the quinoneimine N-oxides 7 (yellow spot) and 8 (red spot).

The above results were confirmed by macroscale electrolysis of 2a-e in MeCN-LiClo, with a large excess of water (6-8% v/v, H\_0/MeCN); actually, the current decayed rapidly to the background current with n = 3. The electrolysed solutions examined as reported in the Experimental Section gave quinoneimine N-oxides 7a-e and 8a-e with almost quantitative yields (Table 1).

The results of voltammetric and coulometric experiments by analogy with the previous studies on the oxidation of 2,2-disubstituted 3-oxo-indoline-1-oxyls suggest that in MeCN-Et\_NClO\_ and in the presence of water, nitroxide radicals 2a-e can be oxidized to the corresponding 5- (7a-e) and 7- (8a-e) quinoneimine N-oxides following Scheme 2.

Thus the anodic oxidation of nitroxide radicals 2a-e begins with a reversible one-electron step yielding the corresponding oxammonium cations 4a-e. These cations in dried MeCN are stable at the electrode during the time of the voltammetric measurements but during the electrolysis in aqueous acetonitrile they undergo an attack at C-5 (or at C-7) by water yielding the C-5 (or C-7) monosubstituted hydroxylamino derivatives 5a-e. These can be further oxidized at the same potentials of 2a-e<sup>11</sup> to give the corresponding C-5 (or C-7) monosubstituted nitroxide radicals 6a-e (or 9a-e). Eventually, oxidation of these radicals yields the 5- (or 7-) quinoneimine N-oxides 7a-e (or 

When the oxidation of **2a-e** is carried out in MeCN containing a large excess of H<sub>2</sub>O the oxammonium cations can undergo the nucleophilic attack at C-5 (or C-7) even at the electrode, therefore the anodic step tends to involve three-electrons.

#### EXPERIMENTAL

**Chemicals** - Nitroxides  $2a^{12}$  and  $2b^{12}$  were prepared as described in the literature starting from 3a and 3b. Cerium ammonium nitrate (Ce(NH) (NO)) Morely - .... 3a and 3b. Cerium ammonium nitrate  $(Ce(NH_4)_2(NO_3)_6, Merck, puriss., p.a.)$  and lithium perchlo-rate (LiClO\_4, Fluka, purum, p.a.) were used as purchased. Acetonitrile (MeCN, Merck, spectrophoto-metric grade) was purified with CaH\_2 and P\_0\_5. Tetraethylammonium perchlorate (Et\_NCLO\_4, Erba, RS grade for polarography) was vacuum dried at 60°C for 4 days. All other products were analytical reagent-grade.

Apparatus and equipment - <sup>1</sup>H NMR spectra were recorded on a Varian 90 MHz spectrometer using TMS as internal standard; IR were recorded using a Perkin-Elmer 257 spectrophotometer from nujol mulls; mass spectra were obtained with a varian MAT 112-S spectrometer; UV spectra were recorded on a Perkin-Elmer 554 spectrophotometer; ESR spectra of radicals 2a-e, 6a-e, and 9a-e were recorded on a Bruker ER 200 spectrometer equipped with an NMR gaussmeter for field calibration and a frequency counter for g-factors determination.

The voltammetric and coulometric measurements were performed as reported elsewhere. $^5$  The working electrode for the voltammetric measurements was a pulsed  $^{14}$  (or stationary, in the case of cyclic voltammetry) platinum disc (Amel 492) of about 2 mm diameter. The reference electrode was Ag/0.1M AgC10\_-MeCN.

Synthesis of Nitroxides 2c-e - Nitroxides 2c-e were synthetized following the method already described in the literature. PhMgBr prepared from 30 mmoles of Mg and bromobenzene in the usual

manner under nitrogen in 20 ml of dried THF, was added to 10 mmoles of the appropriate 3c-e dissolved in 30 ml of dried THF. After stirring for 1h, the reaction mixture was poured in 10% aqueous NH\_Cl (100 ml), extracted with benzene, and after separation the organic layer was dried on Na SO and filtered. The filtrate was treated with PbO (1g) under stirring for 0.5 h. The inorganic solid was then filtered off and the filtrate reduced to a small volume was chromatographed on a SiO column eluting with benzene. From the red fraction, nitroxides were isolated in 85-90% yields and crystallized from ethanol. All compounds showed an absorption in the IR spectrum at 1663  $\text{cm}^{-1}$  due to the C=N group.

Nitroxides 2a-e exhibited almost identical ESR spectra. Because of some differences between the present data and those previously reported for nitroxides 2a and 2b, we have performed a careful computer simulation of the spectrum of 2a recorded in benzene solution (see Fig. 2) and obtained the following parameters: a(N-endocyclic) = 9.76 G, a(N-exocyclic) = 0.75 G, a(H) = 1.10 G, a(H) = 1 $(H_5) = 3.26 \text{ G}, \text{ a } (H_6) = 1.06 \text{ G}, \text{ a } (H_7) = 3.15 \text{ G}, \text{ a } (5\text{H phenyl}) = 0.08 \text{ G}, \text{ g} = 2.0053 \text{ g}$ . The assignement to the different positions has been made by assuming a spin density distribution similar to that unambiguously established for nitroxide 1.

2c: m.p. 163°C. Analysis. Calcd. for C<sub>27</sub>H<sub>21</sub>N<sub>2</sub>O: C,B3.26; H,5.43; N,7.19. Found: C,83.52; H,5.24; N,7.23.

2d: m.p. 158°C. Analysis. Calcd. for C<sub>26</sub>H<sub>18</sub>N<sub>2</sub>OCl: C,76.18; H,4.42; N,6.83. Found: C,76.15; H,4.40; N.6.85.

2e: m.p. 162°C. Analysis. Calcd. for C<sub>26</sub>H<sub>18</sub>N<sub>2</sub>OBr: C,68.73; H,3.99; N,6.17. Found: C,68.71; H,3.85; N,6.15.

#### **ELECTROCHEMICAL OXIDATION OF 2a-e**

Nitroxides 2a-e (0.25 mmoles) were electrolysed at controlled potential (0.90 V) in 6-8% (v/v),  $H_2^{O-MeCN}$  (30 ml)-LiClO<sub>4</sub> 0.1 M at room temperature. After the current had fallen to its background value, the solution was poured into water (50 ml) and extracted with benzene (50 ml). The separated benzene layer was washed with water (4 x 30 ml), dried on  $Na_2SO_A$  and then chromatographed on silica preparative tlc using benzene/acetone 9:1 as an eluent. Compounds 7a-e were isolated from the yellow spot and compounds 8a-e from the red one. Yelds are collected in Table 1. Analytical and spectroscopic data are reported in Table 2.

## CHEMICAL OXIDATION OF NITROXIDE 28-C

Ce(NH) (NO) (1,65 g, 3 mmoles in 10 ml of water) was added dropwise to a solution of nitroxides 2a-e (1 mmole in 40 ml of MeCN) under vigorous magnetic stirring at room temperature. After 1h the reaction mixture was poured into water (50 ml) and the resulting solution extracted with benzene. The benzene layer was washed with water (2 x 20 ml), separated, dried on Na  $S0_{24}$  and evaporated to dryness. The residue chromatographed on silica preparative tlc from benzene/acetone 9:1 gave the quinoneimine N-oxides 7a-e and 8a-e in 90-95% and 5-10% yields, respectively. Analytical and spectroscopic data are collected in Table 2.

## ACKNOWLEDGEMENTS

The authors are indebted to Mr. D. Macciantelli (C.N.R.-Italy) for the recording of some 300 MHz HNMR spectra. L.G. and A.T. gratefully acknowledge the financial contribution from Ministero della Pubblica Istruzione (Rome).

#### REFERENCES

- 1) a, C. Berti, M. Colonna, L. Greci, and L. Marchetti, Tetrahedron, 33, 2321 (1977); b, ibid., 33, 3149 (1977).
- 2) a, L. Greci, ibid., 38, 2435 (1982); b, L. Greci, and F. Ugozzoli unpublished results.
- 3) A. Alberti, L. Greci, P. Stipa, P. Sgarabotto, <u>Tetrahedron</u>, 43, 3031 (1987).
- 4) L. Greci, <u>J. Chem. Res. (S)</u>, 204 (1979).
- 5) R. Andruzzi, A. Trazza, C. Berti and L. Greci, <u>J. Chem. Res. (S</u>), 1781; (<u>M</u>) 1840 (1982).
- 6) C. Berti and L. Greci, <u>J. Org. Chem.</u>, <u>46</u>, 3060 (1981).
- 7) E.G. Rozantsev and V.D. Sholle, Synthesis, 401 (1971).
- S. Chou, J.A. Nelson and T.A. Spencer, <u>J. Org. Chem.</u>, **37**, 2356 (1974).
  J.A. Cella, J.A. Kelly and E.F. Kenehan, <u>Tetrahedron Letters</u>, 2869 (1975).
- 10) M.F. Semmelhach and C.R. Schmid, <u>J. Amer. Chem. Soc.</u>, **105**, 6732 (1983). 11) In a previous paper we have reported that 5- or 7-<u>tert</u>-butoxy and 5- or 7-acetoxy monosubstituted indolinone nitroxide radicals are oxidized at potentials lower than those of the corresponding unsubstituted ones.
- 12) C. Berti, M. Colonna, L. Greci, and L. Marchetti, Tetrahedron, 31, 1745 (1975).
- 13) L. Marchetti, L. Greci and G. Tosi, <u>Gazz. Chim. Ital.</u>, 100, 770 (1970).
- 14) R. Andruzzi and A. Trazza, J. Electroanal. Chem., 77, 101 (1977); ibid., 90, 389 (1978); Annali di Chimica (Rome), 67, 9 (1977).